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The implementation of small prototype quantum computers has
een studied through ensemble quantum computing via NMR
easurements. In such laboratory studies it is convenient to have

ccess to a wide array of logic gates. Here a systematic approach
o reduce the logic gate to an NMR pulse sequence is introduced.
his approach views the truth table for a quantum logic operation
s a permutation matrix that corresponds to a propagator for an
MR transition. This propagator is then used as the starting point

or the derivation of a pulse sequence. Pulse sequences for all the
ermutations of a four level system are reported along with im-
lementations of representative examples on a two spin-1

2 system,
3C-labeled chloroform. © 1999 Academic Press

INTRODUCTION

If built, a quantum computer will be capable of perform
elect computations much more efficiently than a clas
omputer. Such a quantum computer relies on quantum p
elism whereby one operates on quantum superpositions
han classical binary states (1–3).

Ensemble quantum computation has been shown to b
specially useful prototype system for a small quantum c
uter. To date, a universal set of logic gates (4), pseudo-pur
tates (4, 5), quantum database searching algorithms (6, 7), and
rror correction (8) have all been implemented on NMR e
emble quantum computers.
The permutation gates form a particularly important su

f the logic gates (when combined with the one-bit gates
orm a complete set of logic gates) (9). Gates of this form
nclude the well-known controlled-NOT (c-NOT), Toffoli, a
redkin gates and can be easily mapped to a classical

able. While it is true that equivalent gates may be comp
rom a series of c-NOT and Fredkin gates, in the pre
mplementation of ensemble quantum computing via NMR
ften convenient to reduce such a series of gates to the sim

mplementation. Although this reduction does not scale
or an actual quantum computer, it is helpful in the pre
esting of prototype quantum computers. This form of com
ation keeps the overall time of the operation short compar
371
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he decoherence time of the system. In addition, gates d
ped for coherent quantum systems need to preserve the
f the system; it is desirable to avoid introducing and trac
hase rotations of qubits.
In this work the link amongst the truth table, permuta
atrix, and propagator for a logic gate will be explored.
ropagator for a logic gate can be expanded into a form
an readily be reduced to an implementable pulse sequen
ecipe for deriving pulse sequences that are consistent wi
ropagator, but not necessarily unique, is presented. This
dology was developed and demonstrated on a two spin s
ecause it can provide a complete picture: since the numb
ates grows faster than exponential with the number of s

he two spin system is the only one that can be expl
onveniently and in its full complexity. Extension to larg
pin systems is straightforward; the formalism behind
eometric algebra, has been used in treating some qua
omputing experiments (10) as well as for the derivation of a
ffective Hamiltonian on a two spin system (11). A complete
escription of the formalism will be discussed in more deta

uture work.

TRUTH TABLES AS PERMUTATION OPERATIONS

A convenient description of a logic gate is its truth table
imple example is the c-NOT gate in which one bit is flip
onditional on the state of the other bit (Table 1). In NM
here the nuclear spin is the qubit, information is encode

hez-state of the nuclear spin (in the case of spin1
2). Thus, true

s spin-down or the stateu1&, and false is spin-up or the stateu0&.
When the logic table shown in Table 1 is written in th

erms it can easily be seen that a transformation of
igenstates has taken place,

u00& 3 u00&
u01& 3 u01&
u10& 3 u11&
u11& 3 u10&

. [1]
1090-7807/99 $30.00
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372 PRICE ET AL.
he action of the c-NOT logic gate is to swap two of the s
opulations. Logic gates such as these, which can be expr
s a truth table and which are unitary, are necessarilypermu-

ation matrices,wherein each column and row contains exa
single 1, while the rest of the matrix is zeroes (12, 13). These
ermutations are propagators for specific NMR transit
since a transition is just a permutation of the spin popula
round the energy level diagram). Thus, the truth table
ermutation matrix, and the propagator all describe the s

ogical operation and can be used interchangeably. The
gator describing the c-NOT is therefore

P 5 U 5

u00&
u01&
u10&
u11&

^00u ^01u ^10u ^11u

1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2 . [2]

PERMUTATION OPERATIONS FOR
TWO SPIN SYSTEMS

Since the implementation of the logic gate on a phys
ystem is of interest, it is useful to make this mapping conc
y referring to the energy level diagram of a two spin sys
Fig. 1). A weakly coupled two spin-1

2 system has an intern
amiltonian ofH int 5 1

2 vAsZ
A 1 1

2 vBsZ
B 1 1

2 pJsZ
AsZ

B.
The highlighted transformation in Fig. 1 can be implemen

y a selective RF pulse (14, 15). The effective propagator ma
e approximated as

U 5 e2ivt~1/4!~s X
B2s Z

As X
B!

5 1
1 0 0 0
0 1 0 0

0 0 cosSvt

2 D 2i sinSvt

2 D
0 0 2i sinSvt

2 D cosSvt

2 D 2 . [3]

he true propagator is more complex (11) but has been show
o reduce to the above form to within an arbitrarily small er
or the casevt 5 p, the propagator,U, becomes

TABLE 1
Logic Table for c-NOT Gate

A input B input Aoutput Boutput

F (up) F (up) F (up) F (up)
F (up) T (down) F (up) T (down
T (down) F (up) T (down) T (down
T (down) T (down) T (down) F (up)
sed

s
s
e
e

p-

l
te

d

.

U 5 1
1 0 0 0
0 1 0 0
0 0 0 2i
0 0 2i 0

2 . [4]

o within a phase, the unitary operation in Eq. [4] wh
xchanges the spin populations in levels 2 and 3 is a pe

ation matrix. While the description so far has involved o
lassical elements (truth tables), logic gates for quantum
utation must operate “correctly” on superposition states.

nconvenient to have and track additional phase terms
hose that appear in Eq. [4]. For convenience, a propagato
he permutation matrix given in Eq. [2] is desired, where th
re no additional phase terms.
Rather than characterize these gates based on truth tab

s more compact to use the well-known symmetry relation
he permutation group. A permutation,P, that swaps the sp
opulations in the energy levels denoted as 2 and 3 in Fig
esignated asP 5 (2 3). This expression is a cyclic perm

ation of 2 and 3; thus (0 3 2 1) is acyclic permutation of a
our members of the energy level diagram.

In general, withn objects there aren! permutations. The s
f thesen! permutations forms agroup called the symmetri
roup of degreen and is denoted bySn (16). The two spin cas
ith four energy levels and four different spin populati
escribes the groupS4. There are 4!, or 24, different perm

ations, each corresponding to a different transformation i
nergy level diagram.
It is helpful to divide the members of the permutation gr

n the basis of theirconjugacy class.A conjugacy class o
rderk is an operation that switchesk different energy levels

n the case of a two spin system there are conjugacy cl
efining different operations: the identity operation and o

FIG. 1. Energy level diagram for a coupled two spin system with
nternal Hamiltonian,H int 5 1

2 vAsZ
A 1 1

2 vBsZ
B 1 1

2 pJsZ
AsZ

B. Such a system
as four different energy levels, labeled {0, 1, 2, 3}. Quantum logic opera
an be thought of as permutations that permute the populations of v
nergy levels. In the above example, a c-NOT gate exchanges the popu
f energy levels 2 and 3. Thus the propagator, the permutation matrix, a

ruth table all represent the same information.
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373NMR QUANTUM LOGIC GATES
tions which swap two, three, and four elements. ForS4,
perations which swap two and three elements are two

hree-cycles, respectively, while four element swaps ca
ccomplished by both four-cycle operations and opera
hich are the product of twodisjoint (i.e., neither two-cycl
as elements in common) two-cycles.
The conjugacy classes of the 24 permutations are asso
ith transitions on an energy level diagram (Fig. 2).

dentity operation simply leaves the spin populations exact
hey are. In a two-cycle operation, two spin populations
wapped with one another, while the others are left a
nalysis of the energy level diagram shows that two-cy
ay involve zero, single, or double quantum transitio
hree-cycle operations swap three different spin popula
nd will involve either a zero or a double quantum transit
our element swap operations permute all of the spin po

ions. There are four-cycles that involve single quan
loops” that exchange populations around the energy
iagram. In addition, there are operations that swap four
ents, but may be described as the product of two dis

wo-cycles where each two-cycle has no members in com
ethods for dealing with this will be discussed shortly.

USING THE TOOLS OF GEOMETRIC ALGEBRA
TO CONSTRUCT PULSE SEQUENCES

The tools of geometric algebra (10) provide a useful mean
f constructing pulse sequences for quantum logic opera

rom the permutation matrix (note that the systematic de
ion of a pulse sequence in this manner is analogous t
ork of Briand and Sorensen found in Refs. (19) and (20)).
he method is based on the use of primitive idempote
rimitive idempotents, E6, satisfy the following properties:

E 1 E 5 1, ~E ! 2 5 E , E E 5 0. [5]

FIG. 2. Energy level diagrams for 2-, 3-, and 4-element operations. (
uantum transitions. (B) 3-element operations. Note that the arrows are n
otated around a “loop.” (C) Four-element operations. The solid lines in
ransitions.
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useful property of these idempotents is that they help
lify exponential operations as follows:

eAzE6 5 eAE6 1 E7 ~provided that@A, E6# 5 0!.
[6]

or spin-12 particles, the idempotents of interest are

E6
i 5

1

2
~1 6 s Z

i ! E6
i , j 5

1

2
~1 6 s Z

i s Z
j !, [7]

heres are the Pauli matrices. Note thatE1
A is thus the densit

atrix for theA spin in the up state,E2
B is the density matri

or the B spin in the down state, etc. It should be noted
uch operators have been useful in other NMR quantum
uting experiments (17).
Using the definitions ofE1, E2, andsX, the propagator i

q. [2] can be written in a simple form.

U 5 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
5 E1

A E1
B 1 E2

A E1
B 1 s X

BE1
A E2

B 1 s X
BE2

A E2
B . [8]

he upper left hand element of the matrix,u00&, is E1
AE1

B, the
ext element,u10&, is E2

AE1
B, etc. By taking advantage of t

ules in Eq. [5], namely thatE1
i 1 E2

i 5 1, the right hand sid
f Eq. [8] simplifies to

U 5 s X
BE2

A 1 E1
A . [9]

n this form, there is a simple interpretation of the propaga
. The right hand side of Eq. [9] can be read as an instru

Two-element operations showing zero (dashed), single (solid), and dou
unidirectional, indicating that populations are no longer being swapped, but are bein
ate single quantum “loops” while the dotted lines show zero and doubntum
A)
ow
dic
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374 PRICE ET AL.
o rotate theB spin about thex axis if theA spin is down an
o do the identity operation (i.e., nothing) if theA spin is up
he expression given in Eq. [9] could have been wri
irectly from the truth table. Table 2 gives the idempo
xpressions for the two-cycle operations.
The expression of the problem in terms of idempotents

FIG. 3. Results of applying the transition (2 3) to the equilibrium stat
he spectrum on the left is after ap/2 readout pulse on theA spin. It is an an
he spectrum on the right is after ap/2 readout pulse on theB spin. The si

TABLE 2
Two-Cycle Operations

Transition Propagator Idempotent express

(1 2)

1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
E1

A,B 1 sX
AsX

BE2
A,B

(0 3)

1
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

2
E2

A,B 1 sX
AsX

BE1
A,B

(2 3)

1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
E1

A 1 sX
BE2

A

(1 3)

1
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

2
E1

B 1 sX
AE2

B

(0 1)

1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

2
E2

A 1 sX
BE1

A

(0 2)

1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

2
E2

B 1 sX
AE1

B

n
t

o

akes the generation of the pulse sequence quite straig
ard. The propagator for the c-NOT should be manipul

nto elements which can be physically applied (e.g., RF pu
nd evolutions under the internal Hamiltonian). This is acc
lished by first rewriting the propagator as

U 5 E1
A 1 ~i!~2i!s X

BE2
A , [10]

hich can then be factorized into

U 5 ~2is X
BE2

A 1 E1
A !~iE2

A 1 E1
A !. [11]

sing the fact that the idempotents may be expresse
xponentials as given in Eq. [6], the above expression bec

U 5 e2is X
BE 2

A p/ 2 z eiE 2
A p/ 2. [12]

his expression may be expanded as

U 5 eip/4 z e2is X
Bp/4 z e2is Z

Ap/4 z eis Z
As X

Bp/4. [13]

his is an exact expression for the propagator and is a
ulse sequence for its implementation. It should be noted
ll of these terms commute, so that they may applied in
rder. When implemented, and the order is decided upon
ulse sequence will be read from right to left since the ab
xpression constitutes the left hand side propagator.
In order to implement this propagator on the spectrome

hould be noted that

e2is Z
Ap/4 5 e2is X

Ap/4 z e2is Y
Ap/4 z eis X

Ap/4, [14]

f chloroform, which performs the transformation1
2 (sZ

A 1 sZ
B) 3 1

2 (sZ
AsZ

B 1 sZ
B).

ase spectrum corresponding to the antiphase state1
2 (sX

AsZ
B 1 sZ

B) as expected
peak corresponds to the state1 (s As B 1 s B), which is as expected.
e o
tiph
ngle
 2 Z X X
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375NMR QUANTUM LOGIC GATES
nd

eis Z
As X

Bp/4 5 e2is Y
Bp/4 z eis Z

As Z
Bp/4 z eis Y

Bp/4. [15]

y combing like terms the propagator,U, becomes

U 5 e2i~s X
A1s X

B!p/4 z e2i~s Y
A1s Y

B!p/4 z eis X
Ap/4 z eis Z

As Z
Bp/4 z eis Y

Bp/4.

[16]

his is easily seen as an NMR pulse sequence (recall, th
hat the above propagator is to be applied from right to le

Sp

2D
2Y

B

2 S 1

2JD
SC

2 Sp

2D
2X

A

2 Sp

2D
Y

A1B

2 Sp

2D
X

A1B

, [17]

here (12 J)SC is a period of length1
2 J where only scala

oupling takes place and the chemical shift terms have
efocused. A convenient means of implementing this is a p
hat simultaneously rotates the two coupled spins (18). The

Z
AsZ

B rotation can be rewritten

eius Z
As Z

B

5 e~i/ 2!~us Z
As Z

B1vAs Z
A1vBs Z

B! z e~i/ 2!~us Z
As Z

B2vAs Z
A2vBs Z

B!.

[18]

his is equivalent to,

5 eiHt/ 2 z ei~s X
A1s X

B!p/ 2 z eiHt/ 2 z e2i~s X
A1s X

B!p/ 2, [19]

hereH is the internal Hamiltonian of the system. Thus,
ulse sequence to implement the above (1

2 J)SC is

1
2 ~p! A1B 2

1
2 ~p! A1B. [20]
S4JD X S4JD 2X
TABLE 3
Three-Cycle Operations

Operation Propagator Idempotent expression

(0 2 3)

1
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

2
(E2

B 1 sX
AE1

B)(E1
A 1 sX

BE2
A)

(0 3 1)

1
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

2
(E2

A,B 1 sX
AsX

BE1
A,B)(E1

B 1 sX
AE2

B)

(0 3 2)

1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

2
(E2

A,B 1 sX
AsX

BE1
A,B)(E1

A 1 sX
BE2

A)

(0 1 3)

1
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

2
(E2

A 1 sX
BE1

A)(E1
B 1 sX

AE2
B)

(0 1 2)

1
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

2
(E2

A 1 sX
BE1

A)(E1
A,B 1 sX

AsX
BE2

A,B)

(0 2 1)

1
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

2
(E2

B 1 sX
AE1

B)(E1
A,B 1 sX

AsX
BE2

A,B)

(1 3 2)

1
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

2
(E1

B 1 sX
AE2

B)(E1
A 1 sX

BE2
A)

(1 2 3)

1
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

2
(E1

A,B 1 sX
AsX

BE2
A,B)(E1

A 1 sX
BE2

A)
e

FIG. 4. Results of applying the transition (0 3 2) to the equilibrium state of chloroform, which performs the transformation1

2 (sZ
A 1 sZ

B) 3 1
2 (sZ

AsZ
B 2 sZ

B).
he spectrum on the left was acquired after application of ap/2 readout pulse on the A spin and corresponds to the state1

2 (sX
AsZ

B 2 sZ
B). The spectrum on th

ight was acquired after ap/2 pulse on the B spin and yields the state1 (s As B 2 s B).
X
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376 PRICE ET AL.
Several points about the above derivation deserve men
irst, the above formulation is not entirely surprising since

he expression of the transition Hamiltonian given by Sore
t al. and Hatanakaet al. (14, 15) with an additional globa
hase term, and az-rotation on theA spin. This z-rotation
xplains the phase differences between the propagator giv
q. [4] and the permutation matrix from Eq. [2]. The expans
f the propagator into idempotents has just given an expre

hat lends itself more to the language of quantum computa
Second, the global phase term is not as unimportant
ay seem. Although it would not have any bearing on a

pin experiment, in a computationally significant experime
ill be the case that these two spin operations are b
erformed within a larger population of spins (there are

TABLE 4
Four-Element Operations

Operation Propagator Idempotent expres

0 3) (1 2)

1
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

2
sX

AsX
B

0 1) (2 3)

1
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

2
sX

A

0 2) (1 3)

1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2
sX

B

1 3 0 2)

1
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

2
sX

BE1
A,B 1 sX

AE2
A,B

2 0 3 1)

1
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

2
sX

AE1
A,B 1 sX

BE2
A,B

3 2 0 1)

1
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

2
sX

A(sX
BE2

A 1 E1
A)

3 0 1 2)

1
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

2
sX

B(sX
AE1

B 1 E2
B)

2 3 1 0)

1
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

2
sX

A(E1
A 1 sX

BE2
A)

1 2 3 0)

1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

2
sX

B(E1
B 1 sX

AE2
B)
n.
s
n

in
n
on
n.
it

o
it
g

o

omputationally significant two-bit computations). These
pin operations are now embedded within a larger de
atrix, and the phase term is no longer global. In suc

nstance the dependent phase terms must be correctly ap
Finally, the pulse sequence derived above is not unique

ny number of sequences can be derived from the idemp
xpansion. Using the expression of the logic in terms of
etric algebra yields a concrete physical implementation

ogic gate that can depend on the system under study
xample, in some compounds the use of hard pulses m
impler and the derivation of the pulse sequence can r
his.

Results of applying the pulse sequence given in Eq. [1
he equilibrium state of13C-labeled chloroform are shown
ig. 3. The c-NOT operation has the effect of taking
quilibrium state1

2 (sZ
A 1 sZ

B) into 1
2 (sZ

AsZ
B 1 sZ

B). A readou
n the carbon spins (the A spins) gives the expected antip
oublet, while a readout on the hydrogen spins (the B s
ives the expected single peak at double the intensity.

CONSTRUCTION OF HIGHER ORDER OPERATIONS
FROM THE TWO-ELEMENT OPERATIONS

Methods from group theory provide a means whereby
igher order cycles, in this case the three-cycle and
lement operations, can be constructed from two-cycle o

ions.

onstruction of the Three-Cycle Operations

As was mentioned above, the three-cycle operations a
he form (0 1 3), etc. Such a permutation can be constru
rom two two-cycles by breaking up the three-cycle as
) 5 (0 1) (1 3). Thus the pulse sequence for (0 1 3) is obta
y appending the pulse sequence for the two-cycle (0 1) t

wo-cycle (1 3), both of which are found in Table 2.
There is still a degree of flexibility whereby the two

uences that are the easiest to implement for a given comp
an be merged. Since each two-cycle is its own inverse
roduct of two two-cycles (a b) (b c) can be viewed as (a b)
b c) (a b)21 (a b). The first three terms are a rotation of so
a b) (b c) (a b)21 5 (a c). Thus, (a b) (b c) 5 (a c) (a
), and Eq. [19] can be rewritten as any of the following:

~1 2 3! 5 ~1 2! ~2 3! 5 ~2 3! ~1 3! 5 ~1 3! ~1 2!. @21#

he expressions for the three-cycle operations are show
able 3.
The results of applying the transition (0 3 2) to the equ

ium state of chloroform are shown in Fig. 4. The (0 3
equence operates opposite the above c-NOT operatio
akes the equilibrium state12 (sZ

A 1 sZ
B) into 1

2 (sZ
AsZ

B 2 sZ
B). A

eadout on the carbon spins (the A spins) gives the exp
ntiphase doublet (which is now opposite in phase to that o
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-NOT), while a readout on the hydrogen spins (the B sp
ives a single peak at twice the intensity, but on the opp

ransition from the above c-NOT.

onstruction of the Four-Element Operations

The four-element operations are somewhat easier to
truct. As was stated earlier, some operations are the prod
wo disjoint (commuting) two-cycles. A disjoint two-cycle
f the form (a b) (c d) where neither two-cycle has an elem

n common with the other. In such a case, the elements o
o not affect the other. An example of this is the operation
waps populations at 0 and 3 and populations at 1 and 2.
n operation is expressed as (0 3) (1 2). Using the me
utlined above the operation can be expressed as

U 5 s X
As X

B, [22]

hich is a hardp-pulse. Note that applying the two two-cyc
perations will simplify to the above expression.
As with the three-cycle operations, the four-cycles can

omposed from a series of two-cycles. An example of th
he operation (0 1 2 3)which can be rewritten as (0 1) (1 2)
). The same techniques of rotating the members can be
nd the above is rewritten as (0 1) (2 3) (1 3). The first

erms are a disjoint two-cycle which is just the operationsX
A,

nd the expression for (1 3) was already found. Thus
peration (0 1 2 3) is

U 5 s X
A~s X

BE2
A 1 E1

A !. [23]

nalysis of the other nondisjoint operations shows that t
oo, are an additional rotation of a two-cycle operation. Th
esults are summarized in Table 4.

FIG. 5. Application of the transformation (0 1)(2 3) to the equilibrium

Z
B). The spectrum on the left was obtained after an application of a re
n the right, acquired after a readout pulse on the B spins corresponds
s)
te

n-
t of

t
ne
at
ch
ds

e
is

ed
o

e

y,
e

The pulse sequence for the transition (0 1)(2 3) is ap-pulse
n theA spin. This was implemented on the chloroform sam
nd the results can be seen in Fig. 5. This is simply a NOT
n theA spin. Thus the equilibrium state12 (sZ

A 1 sZ
B) is taken

nto 1
2(2sZ

A 1 sZ
B). The readout on the carbon spins shows

hey have been inverted, while the readout on the hydr
pins confirm that they were left alone.

CONCLUSIONS

Actual pulse sequences have been derived for all pos
wo spin logic gates where the gate is expressible as a b
nitary operator and a truth table. Starting with the truth t

or the operation, we have used methods from geometric
ra and group theory to construct physical implementation

hese gates on an NMR spectrometer. The general meth
he construction of these pulse sequences can be exten
ore complex spin systems. Care was taken in the desi

hese sequences to preserve the phases in the propagat
hat any of these sequences will operate correctly on a qua
uperposition. In our exploration of quantum computing o
rototype ensemble quantum computer, we have found it
ery useful to have such an array of logic gates available

ACKNOWLEDGMENTS

This work was supported by the U.S. Army research office Grant DAAG
7-1-0342 under the DARPA Ultrascale Computing Program. AFF th
SF/MCB 9527181. MDP thanks the Harvard–MIT Division of Health S
nces and Technology for academic and financial support.

REFERENCES

1. S. Lloyd, Science 261, 1569 (1994).

2. D. DiVencenzo, Science 270, 25–261 (1995).

ate of chloroform, which performs the transformation1
2 (sZ

A 1 sZ
B) 3 1

2 (2sZ
A 1

ut pulse on the A spins and corresponds to the state1
2 (2sX

A 1 sZ
B). The spectrum

the state1
2 (2sZ

A 1 sX
B).
st
ado

to



1

1

1

1

1

1

1

1

1

1

2

378 PRICE ET AL.
3. R. Feynman, in “Lectures in Quantum Computing” (J. G. Hey and
R. W. Allen, Eds.), Addison Wesley, Reading, MA (1996).

4. D. G. Cory, M. D. Price, and T. F. Havel, Physica D 120, 82–101 (1998).

5. N. A. Gershenfeld and I. L. Chuang, Science 275, 350–356 (1997).

6. L. K. Grover, Phys. Rev. Lett. 79, 325–328 (1997).

7. I. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev. Lett. 80,
3408–3411 (1998).

8. D. G. Cory, M. D. Price, W. E. Maas, E. Knill, R. Laflamme, W. H.
Zurek, T. F. Havel, and S. S. Somaroo, Phys. Rev. Lett. 81, 2152–
2155 (1998).

9. A. Barenco, C. H. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P.
Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52,
3457–3467 (1995).

0. S. S. Somaroo, D. G. Cory, and T. F. Havel, Phys. Lett. A 240, 1–7
(1998).

1. T. F. Havel, personal communication.
2. T. Toffoli, in “Automata Languages and Programming, Seventh
Colloquium Lecture Notes in Computer Science,” Vol. 84
(1980).

3. E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219–253 (1982).

4. O. W. Sorensen, G. W. Eich, M. H. Levitt, G. Bodenhausen, and
R. R. Ernst, Prog. Nucl. Mag. Reson. Spectrosc. 16, 163–192
(1983).

5. H. Hatanaka and C. S. Yannoni, J. Magn. Reson. 42, 330–333
(1981).

6. T. Inui, Y. Tanabe, and Y. Onodera, “Group Theory and Its Appli-
cations in Physics” Springer-Verlag, Berlin (1990).

7. Z. L. Madi, R. Bruschweiler, and R. R. Ernst, Journ. Chem. Phys.
109, 10603–10611 (1998).

8. E. L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070–1084 (1952).

9. J. Briand and O. W. Sorensen, J. Magn. Res. 125, 202–206 (1997).

0. J. Briand and O. W. Sorensen, J. Magn. Res. 135, 44–49 (1998).


	INTRODUCTION
	TRUTH TABLES AS PERMUTATION OPERATIONS
	TABLE 1

	PERMUTATION OPERATIONS FOR TWO SPIN SYSTEMS
	FIG. 1
	FIG. 2

	USING THE TOOLS OF GEOMETRIC ALGEBRA TO CONSTRUCT PULSE SEQUENCES
	TABLE 2
	FIG. 3
	TABLE 3
	FIG. 4
	TABLE 4

	CONSTRUCTION OF HIGHER ORDER OPERATIONS FROM THE TWO-ELEMENT OPERATIONS
	FIG. 5

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

