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The implementation of small prototype quantum computers has  the decoherence time of the system. In addition, gates dev
been studied through ensemble quantum computing via NMR  oped for coherent quantum systems need to preserve the ph
measurements. In such laboratory studies it is convenient to have  of the system; it is desirable to avoid introducing and trackin
access to a wide array of logic gates. Here a systematic approach phase rotations of qubits.
to reduce the logic gate to an NMR pulse sequence is introduced. In this work the link amongst the truth table, permutatior
This approach views the truth table for a quantum logic operation matrix, and propagator for a logic gate will be éxplored The

as a permutation matrix that corresponds to a propagator for an f loai b ded i f h
NMR transition. This propagator is then used as the starting point propagator for a logic gate can be expanded into a form th

for the derivation of a pulse sequence. Pulse sequences for all the ~Can readily be reduced to an implementable pulse sequence
permutations of a four level system are reported along with im-  recipe for deriving pulse sequences that are consistent with t
plementations of representative examples on a two spin-i system, propagator, but not necessarily unique, is presented. This me
BC-labeled chloroform. © 1999 Academic Press odology was developed and demonstrated on a two spin syst
because it can provide a complete picture: since the number
gates grows faster than exponential with the number of spin
INTRODUCTION the two spin system is the only one that can be explore

conveniently and in its full complexity. Extension to larger

If built, a quantum computer will be capable of performingPN Systems is straightforward; the formalism behind this
select computations much more efficiently than a classidffOmevic algebra, has been used in treating some quant
computer. Such a quantum computer relies on quantum paﬁg_mputlng experimentd Q) as well as for the derivation of an

lelism whereby one operates on quantum superpositions ratfafctive Hamiltonian on a two spin systerhlj. A complete -
than classical binary state$<3). description of the formalism will be discussed in more detail ir

Ensemble quantum computation has been shown to be e work.
especially useful prototype system for a small quantum com-

puter. To date, a universal set of logic gatds pseudo-pure TRUTH TABLES AS PERMUTATION OPERATIONS
states4, 5), quantum database searching algorith&<), and

error correction §) have all been implemented on NMR en- 5 cqnyenient description of a logic gate is its truth table. A

semble quantum computers. simple example is the c-NOT gate in which one bit is flippec

The permutation gates form a particularly important SUbsgtitional on the state of the other bit (Table 1). In NMR
of the logic gates (when combined with the one-bit gates thgy,qre the nuclear spin is the qubit, information is encoded |

form a complete set of logic gatesy)( Gates of this form e, grate of the nuclear spin (in the case of siThus, true
mclud_e the well-known controlle_d—NOT (c-NOT), Toffol_l, and;q spin-down or the staié), and false is spin-up or the sta@.
Fredkin gates and can be easily mapped to a classical ruthyhen the logic table shown in Table 1 is written in these

table. While it is true that equivalent gates may be composgd s it can easily be seen that a transformation of spi
from a series of c-NOT and Fredkin gates, in the preseé‘itgenstates has taken place

implementation of ensemble quantum computing via NMR it is
often convenient to reduce such a series of gates to the simplest

implementation. Although this reduction does not scale well |00y — |00)
for an actual quantum computer, it is helpful in the present |01) — |01)
testing of prototype quantum computers. This form of compi- |10y — [11) - [1]
lation keeps the overall time of the operation short compared to |11) — |10)
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TABLE 1 1 0 O 0
Logic Table for c-NOT Gate 01 0 O
U=lo o o il [4]
Ainpul Binpul Aoulpul Bou&pul O 0 _ | 0
F (up) F (up) F (up) F (up)
F (up) T (down) F (up) T(down) To within a phase, the unitary operation in Eqg. [4] which
T (down) F (up) T (down) T(down) exchanges the spin populations in levels 2 and 3 is a perm
T (down) T (down) T (down) F (up)

tation matrix. While the description so far has involved only
classical elements (truth tables), logic gates for quantum cor
putation must operate “correctly” on superposition states. It i

The action of the ¢-NOT logic gate is to swap two of the spitpconvenient to have and track additional phase terms lik
populations. Logic gates such as these, which can be expred§@ge that appear in Eq. [4]. For convenience, a propagator |
as a truth table and which are unitary, are necesspeiynu- the permutation matrix given in Eq. [2] is desired, where ther
tation matricesyherein each column and row contains exactl§re no additional phase terms.

a single 1, while the rest of the matrix is zero#g,(13. These Rather than characterize these gates based on truth table:
permutations are propagators for specific NMR transitiofs more compact to use the well-known symmetry relations c
(since a transition is just a permutation of the spin populatiofi¥e permutation group. A permutatioR, that swaps the spin
around the energy level diagram). Thus, the truth table, tR@pulations in the energy levels denoted as 2 and 3 in Fig. 1
permutation matrix, and the propagator all describe the safigsignated a® = (2 3). This expression is a cyclic permu-
logical operation and can be used interchangeably. The prégtion of 2 and 3; thusQ(3 2 1) is acyclic permutation of all

agator describing the c-NOT is therefore four members of the energy level diagram.
In general, withn objects there ara! permutations. The set

of thesen! permutations forms group called the symmetric
group of degre@ and is denoted b$, (16). The two spin case
with four energy levels and four different spin populations

(00| (01| (10 (11
ooy)/ 1 0 0 0O

P=U-= Igé; 8 é 8 (1) [2] degcribes the grouf,. Th_ere are 4I or 24, different permu-
1\ o 0 1 0 tations, each c_orrespondmg to a different transformation in tk
energy level diagram.
It is helpful to divide the members of the permutation groug
PERMUTATION OPERATIONS FOR on the basis of theiconjugacy classA conjugacy class of
TWO SPIN SYSTEMS orderk is an operation that switchésdifferent energy levels.

In the case of a two spin system there are conjugacy class

Since the implementation of the logic gate on a physicdkfining different operations: the identity operation and opel
system is of interest, it is useful to make this mapping concrete
by referring to the energy level diagram of a two spin system

(Fig. 1). A weakly coupled two spihsystem has an internal g A
Hamiltonian ofH,, = fw,0? + twgol + Imlotos. |
The highlighted transformation in Fig. 1 can be implemented i 1
by a selective RF pulsd 4, 15. The effective propagator may 0
be approximated as N
0L +T
U= e—iwt(lm)(ui—aﬁui) 1
10 0 0 2
01 0 0 4
ot [ ot |
=10 O cos<2) =i sm(z) . [3] 3
[ ot ot
0 0 —jsinl = coy — FIG. 1. Energy level diagram for a coupled two spin system with the
2 2 internal HamiltonianH,,, = 3 wA0% + 2 weo? + 3 wJoscos. Such a system

has four different energy levels, labeled {0, 1, 2, 3}. Quantum logic operation

. can be thought of as permutations that permute the populations of vario
The true propagator is more CompleleI but has been shown energy levels. In the above example, a c-NOT gate exchanges the populatit

to reduce to the above form to within an arbitrarily small errops energy levels 2 and 3. Thus the propagator, the permutation matrix, and t
For the caseot = m, the propagatort), becomes truth table all represent the same information.
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FIG. 2. Energy level diagrams for 2-, 3-, and 4-element operations. (A) Two-element operations showing zero (dashed), single (solid), and double
guantum transitions. (B) 3-element operations. Note that the arrows are now unidirectional, indicating that populations are no longer belingusveappeing
rotated around a “loop.” (C) Four-element operations. The solid lines indicate single quantum “loops” while the dotted lines show zero and dauble g
transitions.

ations which swap two, three, and four elements. Bgr A useful property of these idempotents is that they help sin
operations which swap two and three elements are two- aplify exponential operations as follows:
three-cycles, respectively, while four element swaps can be
accomplished by both four-cycle operations and operations e*t- = e*E, + E. (provided thafA, E.] = 0).
which are the product of twdisjoint (i.e., neither two-cycle [6]
has elements in common) two-cycles.

The conjugacy classes of the 24 permutations are associgted spins particles, the idempotents of interest are
with transitions on an energy level diagram (Fig. 2). The
identity operation simply leaves the spin populations exactly as , , N -
they are. In a two-cycle operation, two spin populations are E.=50%03 EY=5(1%050)), [7]
swapped with one another, while the others are left alone.

Analy;is of the energy level diagram shows that tWO'_CYCI%herea are the Pauli matrices. Note tHat is thus the density
may involve zero, single, or doublg q“""”‘“”ﬁ trans't'o.n%atrix for theA spin in the up statez® is the density matrix
Three-cycle operations swap three different spin populatlo%sf the B spin in the down state, etc. It should be noted tha

2nd W':I mvoltve either a ziro ora doutble l(;]u?rtl:]um tfans'“o uch operators have been useful in other NMR quantum cor
our element swap operations permute all of the spin popu fting experimentsi().

EIOHS. ”There are four-cycles j[hat involve single quantu Using the definitions of ., E_, andc, the propagator in
loops” that exchange populations around the energy ley, [2] can be written in a simple form

diagram. In addition, there are operations that swap four ele-" '
ments, but may be described as the product of two disjoint

two-cycles where each two-cycle has no members in common. 1000
i ) e : 0100

Methods for dealing with this will be discussed shortly. U=190 0 1
0 010

USING THE TOOLS OF GEOMETRIC ALGEBRA
TO CONSTRUCT PULSE SEQUENCES

EAES + EAES + oREYE® + oREAER.  [8]

The tools of geometric algebra@) provide a useful means The upper left hand element of the matri@(), is E}E?, the
of constructing pulse sequences for quantum logic operatiamsxt element|10), is E*E?, etc. By taking advantage of the
from the permutation matrix (note that the systematic derivaules in Eq. [5], namely tha', + E. = 1, the right hand side
tion of a pulse sequence in this manner is analogous to ifeEq. [8] simplifies to
work of Briand and Sorensen found in Ref49) and @0)).

The method is based on the use of primitive idempotents. U= ocSE” + E4. [9]
Primitive idempotents, E satisfy the following properties:

In this form, there is a simple interpretation of the propagatol
E.+E_=1, (E.)?=E., E,E_=0. [5] U. The right hand side of Eq. [9] can be read as an instructic
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TABLE 2 makes the generation of the pulse sequence quite straightf
Two-Cycle Operations ward. The propagator for the c-NOT should be manipulate
into elements which can be physically applied (e.g., RF pulse

Transition Propagator ldempotent expressiory g evolutions under the internal Hamiltonian). This is accomn
12) 1.0 0 0 EAB 4 ghgBEAS plished by first rewriting the propagator as
0010
010
0 0 0 U=E}+ ((—1)oiE?, [10]
03) 000 1 E*® + oRoREL® . _ .
0100 which can then be factorized into
0010
100 0
U= (—wobE” + ES)LEA + ES). [11]
(23) 100 0 EY + ofE2
0100
0 0 01 Using the fact that the idempotents may be expressed
0010 exponentials as given in Eq. [6], the above expression becom
13 100 O E® + o%E®
0 00 1
00 10 U= ewriE’jw/z . eLEéwlz_ [12]
0100
(01) 0100 E% + oXE2 This expression may be expanded as
100 0
0 0 1 0 _ B _ A A B
0O 0 O U= em/4 .e woymld e whmla, e”"'z"x”'m_ [13]
(02 0 010 E® + o%E®
i’ é 8 8 This is an exact expression for the propagator and is also
00 0 pulse sequence for its implementation. It should be noted th

all of these terms commute, so that they may applied in ar
order. When implemented, and the order is decided upon, tl

. . o [ nce will r from righ I ince th v
to rotate theB spin about the axis if the A spin is down and puise sequence be read from right to left since the abo

. : . . : . o expression constitutes the left hand side propagator.
to do the identity operation (i.e., nothing) if thespin is up. . ;
. . . . In order to implement this pr ronth rometer
The expression given in Eq. [9] could have been writte order to implement this propagator on the spectromete

directly from the truth table. Table 2 gives the idempoter?rbomd be noted that

expressions for the two-cycle operations. X . X .
The expression of the problem in terms of idempotents also g 1wzt = gioxmla . g ioyTlh, guoTld [14]

——p.

0 1000 2000 3000 4000 0 500 1000 1500 2000

FIG. 3. Results of applying the transition (2 3) to the equilibrium state of chloroform, which performs the transforfatiorr o3) — 3 (0502 + o3).
The spectrum on the left is after2 readout pulse on th& spin. It is an antiphase spectrum corresponding to the antiphasé &tdies + o3) as expected.
The spectrum on the right is afterra2 readout pulse on thB spin. The single peak corresponds to the sidtefo} + %), which is as expected.
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TABLE 3
Three-Cycle Operations

375

and

em;o’in — e-LO’EW/‘l . eL(TQ(T?ﬂT/“ . eersaTM

[15]

Operation Propagator Idempotent expression
©023) 00 0 1 (E° + olES)(EA + oBEA) By combing like terms the propagatdy, becomes
0100
1 0 0 O U= e*L(UQJrUE)TrM . e*L(U©+U$)1T/4 . eLUQﬂT/‘l . eL()’?U?ﬂ/“ . eL(T$7T/4.
0 010
AB A _BpEAB B AgEB [16]
(031 0 1 0 0 (E2® + oRoxEL°)(ES + oxES)
0 001 This is easily seen as an NMR pulse sequence (recall, thouc
(1’ 8 é 8 that the above propagator is to be applied from right to left)
032 0 0 1 0 (E*® + oLoRELP)(ERY + ofER) o\ B 1 o\ A o\ AtB o\ AtB
01 0 O — — | — — | = N — | = , [17]
0 001 2/, 23) 2) 2/, 2/,
10 0 ©
(013) 0 0 0 1 (E* + oSER)(E® + oLE®) where §J)sc is a period of lengthiJ where only scalar
1000 coupling takes place and the chemical shift terms have be
8 (1) é 8 refocused. A convenient means of implementing this is a pul:
that simultaneously rotates the two coupled spib8).(The
A BEA AB A B AB . .
(012 2 8 é 8 (B2 + oxEX)(EX" + 0%0xE™) 5208 rotation can be rewritten
0100
0 0 O eLeU‘;U‘; — e(L/Z)(G(rQUEerAU;erBUg) . e(L/Z)(9a‘§o‘§*wAu’§*wBU§).
©021) 010 0 (E® + oLEZ)(ER® + oloREL?) (18]
0010 o _
1 0 0 O This is equivalent to,
0 0 0
132 1 0 0 0 (E® + ofEB)(E? + oPE") = g2, eL(aQ+a§)w/2 .2, e—L(aQ+a§)m2’ [19]
0010
0 0 01 . . I
0100 whereH is the internal Hamiltonian of the system. Thus, the
ulse sequence to implement the aboy@« is
(123 10 0 0 (BN oholEREN + ofEY  PUoC ool P oM
0 001 L .
0100
0010 (4J> —(mye - (4J> — (m)AE. [20]
Y
k
-~
0 1000 2000 3000 4000 0 500 1000 1500 2000

FIG. 4. Results of applying the transition (0 3 2) to the equilibrium state of chloroform, which performs the transforhfatiot o3) — 3 (o205 — o3).

The spectrum on the left was acquired after application sf2zareadout pul

right was acquired after @/2 pulse on the B spin and yields the stater;

se on the A spin and corresponds to the statéos — o2). The spectrum on the
B B
oy — Ox).
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TABLE 4 computationally significant two-bit computations). These twc
Four-Element Operations spin operations are now embedded within a larger densi
_ ~ matrix, and the phase term is no longer global. In such a
Operation Propagator Idempotent expressiofysrance the dependent phase terms must be correctly appli

Finally, the pulse sequence derived above is not unique, al
any number of sequences can be derived from the idempote
expansion. Using the expression of the logic in terms of gec
metric algebra yields a concrete physical implementation of
ol logic gate that can depend on the system under study. F

example, in some compounds the use of hard pulses may

simpler and the derivation of the pulse sequence can refle

this.
ox Results of applying the pulse sequence given in Eq. [17] t
the equilibrium state of°C-labeled chloroform are shown in
Fig. 3. The c-NOT operation has the effect of taking the
equilibrium statg (o5 + %) into 3 (o202 + o3). A readout
on the carbon spins (the A spins) gives the expected antiphe
doublet, while a readout on the hydrogen spins (the B spin:
gives the expected single peak at double the intensity.

03) (12

A B
TXOY

= O OO
O OO

0123

= O OO o OoOr o

0213

= O OO [cNeoNeN

[cNeNoN

(1302)

B AB A AB
oxEY" + oxE”

= O OO

2031) GLER® + gPEA®

CONSTRUCTION OF HIGHER ORDER OPERATIONS
FROM THE TWO-ELEMENT OPERATIONS

= O OO [cNeNoN

oR(oSEN + E) Methods from group theory provide a means whereby th
higher order cycles, in this case the three-cycle and fol
element operations, can be constructed from two-cycle oper
tions.

(3201)

= O OO O OO O Or o O OO O OoOr o

O OO [eoNeNoN

(3012) oB(oLE® + EP)

Construction of the Three-Cycle Operations

oL OO O OoOr o O OoOr o oL OO O Or o oL OO cNeoNaN )

e NeoNe]

As was mentioned above, the three-cycle operations are
oAEP + o%ER) the form (0 1 3), etc. Such a permutation can be constructe
from two two-cycles by breaking up the three-cycle as (0 :
3) = (01) (1 3). Thus the pulse sequence for (0 1 3) is obtaine
by appending the pulse sequence for the two-cycle (0 1) to tt
oR(ES + o%EP) two-cycle (1 3), both of which are found in Table 2.

There is still a degree of flexibility whereby the two se-
quences that are the easiest to implement for a given compou
can be merged. Since each two-cycle is its own inverse, tl
product of two two-cyclesg b) (b ¢) can be viewed asa(b)

1 . . |
Several points about the above derivation deserve menti R.C) (@ab) ~(a b);lThe first three terms are a rotation of sorts:

First, the above formulation is not entirely surprising since it (< b) (b ¢) (ab) "= (ac). Thus, @b)(bo=(a C). (a-

the expression of the transition Hamiltonian given by Sorensg and Eq. [19] can be rewritten as any of the following:

et al. and Hatanakeaet al. (14, 19 with an additional global

phase term, and a-rotation on theA spin. Thisz-rotation (123 =(12(23)=(23) (13 =(13)(12). [21]

explains the phase differences between the propagator given in

Eq. [4] and the permutation matrix from Eqg. [2]. The expansionhe expressions for the three-cycle operations are shown

of the propagator into idempotents has just given an expressitable 3.

that lends itself more to the language of quantum computation.The results of applying the transition (0 3 2) to the equilib-
Second, the global phase term is not as unimportant agiitm state of chloroform are shown in Fig. 4. The (0 3 2)

may seem. Although it would not have any bearing on a twsequence operates opposite the above c-NOT operation &

spin experiment, in a computationally significant experimenttakes the equilibrium statgo; + o7) into3 (o207 — 03). A

will be the case that these two spin operations are beirepdout on the carbon spins (the A spins) gives the expect

performed within a larger population of spins (there are remtiphase doublet (which is now opposite in phase to that of tf

(2310)

R OOOo [cNeNeN

OO ORr

(1230)

O OoOPr o OoOr OO
= OOoOOo [eNeh e oOOoOr o [cNeNoN

el NeoNe)
O OORr




NMR QUANTUM LOGIC GATES 377

L

0 1000 2000 3000 4000 0 500 1000 1500 2000

FIG. 5. Application of the transformation (0 1)(2 3) to the equilibrium state of chloroform, which performs the transforinatidba- o3) — 3 (—o? +
a%). The spectrum on the left was obtained after an application of a readout pulse on the A spins and corresponds té trergtateo?). The spectrum
on the right, acquired after a readout pulse on the B spins corresponds to thk(state + o%).

c-NOT), while a readout on the hydrogen spins (the B spins) The pulse sequence for the transition (0 1)(2 3) #&pulse
gives a single peak at twice the intensity, but on the opposita theA spin. This was implemented on the chloroform sampl

transition from the above c-NOT. and the results can be seen in Fig. 5. This is simply a NOT ga
_ _ on theA spin. Thus the equilibrium staégo, + o3) is taken
Construction of the Four-Element Operations into3(— o2 + o3). The readout on the carbon spins shows thé

The four-element operations are somewhat easier to cé'ﬁgy have been inverted, while the readout on the hydroge

struct. As was stated earlier, some operations are the produc?."%'lmS confirm that they were left alone.
two disjoint (commuting) two-cycles. A disjoint two-cycle is
of the form @ b) (c d) where neither two-cycle has an element
in common with the other. In such a case, the elements of OneActuaI Ulse sequences have been derived for all possik
do not affect the other. An example of this is the operation tht% P 4 P

swaps populations at 0 and 3 and populations at 1 and 2. Sucﬁ spin logic gates where the gate is expressible as a bott

an operston s expresse as (0 3) (1 ). Using the mengf2 PEIEor 70 2 1 i Staring i e vt o
outlined above the operation can be expressed as P ’ 9 9

bra and group theory to construct physical implementations ¢
these gates on an NMR spectrometer. The general method
the construction of these pulse sequences can be extendec
more complex spin systems. Care was taken in the design
which is a hardm-pulse. Note that applying the two two-cyclehese sequences to preserve the phases in the propagator
operations will simplify to the above expression. that any of these sequences will operate correctly on a quantt

As with the three-cycle operations, the four-cycles can Rgperposition. In our exploration of quantum computing on -
composed from a series of two-cycles. An example of this ﬂ)?ototype ensemble quantum computer, we have found it to |

the operation( 1 2 3)which can be rewritten as (0 1) (1 2) (2ve3/ useful to have such an array of logic gates available.
3). The same techniques of rotating the members can be use

and the above is rewritten as (0 1) (2 3) (1 3). The first two ACKNOWLEDGMENTS
terms are a disjoint two-cycle which is just the operatigh
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CONCLUSIONS

U= oot [22]

U = o4(c2E2 + E%). [23]
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